Analysis and Applications of Heterogeneous Multiscale Methods for Multiscale Partial Differential Equations

نویسنده

  • DOGHONAY ARJMAND
چکیده

This thesis centers on the development and analysis of numerical multiscale methods for multiscale problems arising in steady heat conduction, heat transfer and wave propagation in heterogeneous media. In a multiscale problem several scales interact with each other to form a system which has variations over a wide range of scales. A direct numerical simulation of such problems requires resolving the small scales over a computational domain, typically much larger than the microscopic scales. This demands a tremendous computational cost. We develop and analyse multiscale methods based on the heterogeneous multiscale methods (HMM) framework, which captures the macroscopic variations in the solution at a cost much lower than traditional numerical recipes. HMM assumes that there is a macro and a micro model which describes the problem. The micro model is accurate but computationally expensive to solve. The macro model is inexpensive but incomplete as it lacks certain parameter values. These are upscaled by solving the micro model locally in small parts of the domain. The accuracy of the method is then linked to how accurately this upscaling procedure captures the right macroscopic effects. In this thesis we analyse the upscaling error of existing multiscale methods and also propose a micro model which significantly reduces the upscaling error in various settings. In papers I and IV we give an analysis of a finite difference HMM (FDHMM) for approximating the effective solutions of multiscale wave equations over long time scales. In particular, we consider time scales T ε = O(ε−k), k = 1, 2, where ε represents the size of the microstructures in the medium. In this setting, waves exhibit non-trivial behaviour which do not appear over short time scales. We use new analytical tools to prove that the FD-HMM accurately captures the long time effects. We first, in Paper I, consider T ε = O(ε−2) and analyze the accuracy of FD-HMM in a one-dimensional periodic setting. The core analytical ideas are quasi-polynomial solutions of periodic problems and local time averages of solutions of periodic wave equations. The analysis naturally reveals the role of consistency in HMM for high order approximation of effective quantities over long time scales. Next, in paper IV, we consider T ε = O(ε−1) and use the tools in a multi-dimensional setting to analyze the accuracy of the FD-HMM in locally-periodic media where fast and slow variations are allowed at the same time. Moreover, in papers II and III we propose new multiscale methods which substantially improve the upscaling error in multiscale elliptic, parabolic and hyperbolic partial differential equations. In paper II we first propose a FDHMM for solving elliptic homogenization problems. The strategy is to use the wave equation as the micro model even if the macro problem is of elliptic type. Next in paper III, we use this idea in a finite element HMM setting and generalize the approach to parabolic and hyperbolic problems. In a spatially fully discrete a priori error analysis we prove that the upscaling error can be made arbitrarily small for periodic media, even if we do not know the exact period of the oscillations in the media.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Finite Element Heterogeneous Multiscale Method: a computational strategy for multiscale PDEs

Heterogeneous multiscale methods (HMM) have been introduced by E and Engquist [Commun. Math. Sci. 1 (2003), pp. 87-132] as a general methodology for the numerical computation of problems with multiple scales. In this paper we discuss finite element methods based on the HMM for multiscale partial differential equations (PDEs). We give numerous examples of such multiscale problems, including elli...

متن کامل

Special Session 19: Multiscale numerical methods for partial differential equations

In this talk, I will discuss the stochastic multiscale finite element methods. The goal is to construct basis functions which can capture the spatial heterogeneities as well as the uncertainties. We discuss such methods and demonstrate numerical examples for highly heterogeneous porous media. Further, I will discuss how these methods can be used to speedup the sampling of the subsurface propert...

متن کامل

Heterogeneous multiscale methods for stiff ordinary differential equations

The heterogeneous multiscale methods (HMM) is a general framework for the numerical approximation of multiscale problems. It is here developed for ordinary differential equations containing different time scales. Stability and convergence results for the proposed HMM methods are presented together with numerical tests. The analysis covers some existing methods and the new algorithms that are ba...

متن کامل

Analysis of Heterogeneous Multiscale Methods for Long Time Wave Propagation Problems

In this paper, we analyze a multiscale method developed under the heterogeneous multiscale method (HMM) framework for numerical approximation of multiscale wave propagation problems in periodic media. In particular, we are interested in the long time O(ε−2) wave propagation, where ε represents the size of the microscopic variations in the media. In large time scales, the solutions of multiscale...

متن کامل

Contents 1 Schedule 4 2

In this talk we will present recent developments in the design and analysis of numerical homogenization methods. Numerical methods for linear and nonlinear partial differential equations that combine multiscale methods with reduced order modeling techniques such as the reduced basis method will be discussed. The talk is based upon a series of joint works with various collaborators[1,2,3,4,5]. [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015